Jacobi Forms of Degree One

نویسنده

  • SHUNSUKE YAMANA
چکیده

We show that a certain subspace of space of elliptic cusp forms is isomorphic as a Hecke module to a certain subspace of space of Jacobi cusp forms of degree one with matrix index by constructing an explicit lifting. This is a partial generalization of the work of Skoruppa and Zagier. This lifting is also related with the Ikeda lifting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum : A Geometrical Theory of Jacobi Forms of Higher Degree

Erratum : A Geometrical Theory of Jacobi Forms of Higher Degree Jae-Hyun Yang Department of Mathematics, Inha University, Incheon 402-751, Korea e-mail : [email protected] Erratum In the article A Geometrical Theory of Jacobi Forms of Higher Degree by JaeHyun Yang [Kyungpook Math. J., 40(2)(2000), 209-237], the author presents the Laplace-Beltrami operator ∆g,h of the Siegel-Jacobi space (Hg,h,...

متن کامل

N ov 2 00 7 Jacobi Forms of Degree One and Weil Representations Nils

We discuss the notion of Jacobi forms of degree one with matrix index, we state dimension formulas, give explicit examples, and indicate how closely their theory is connected to the theory of invariants of Weil representations associated to finite quadratic modules. 1 Jacobi forms of degree one Jacobi forms of degree one with matrix index F gained recent interest, mainly due to applications in ...

متن کامل

An Explicit Construction of Jacobi Cusp Forms and Its Applications

From an elliptic cusp form, we construct a Jacobi cusp form of degree one with matrix index, which gives a section of the descent map. We have applications to the theory of Maass spaces on orthogonal groups and the Ikeda lifting.

متن کامل

Ramanujan Congruences for Siegel Modular Forms

We determine conditions for the existence and non-existence of Ramanujan-type congruences for Jacobi forms. We extend these results to Siegel modular forms of degree 2 and as an application, we establish Ramanujan-type congruences for explicit examples of Siegel modular forms.

متن کامل

Modular forms and differential operators

A~tract, In 1956, Rankin described which polynomials in the derivatives of modular forms are again modular forms, and in 1977, H Cohen defined for each n i> 0 a bilinear operation which assigns to two modular forms f and g of weight k and l a modular form If, g], of weight k + l + 2n. In the present paper we study these "Rankin-Cohen brackets" from t w o points of view. On the one hand we give ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008